Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Reprod Sci ; 30(2): 678-689, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35927413

RESUMO

Pre-eclampsia (PE) affects 2-8% of pregnancies and is responsible for significant morbidity and mortality. The maternal clinical syndrome (defined by hypertension, proteinuria, and organ dysfunction) is the result of endothelial dysfunction. The endothelial response to increased levels of soluble FMS-like Tyrosine Kinase 1 (sFLT1) is thought to play a central role. sFLT1 is released from multiple tissues and binds VEGF with high affinity and antagonizes VEGF. Expression of soluble variants of sFLT1 is a result of alternative splicing; however, the mechanism is incompletely understood. We hypothesize that neuro-oncological ventral antigen 2 (NOVA2) contributes to this. NOVA2 was inhibited in human umbilical vein endothelial cells (HUVECs) and multiple cellular functions were assessed. NOVA2 and FLT1 expression in the placenta of PE, pregnancy-induced hypertension, and normotensive controls was measured by RT-qPCR. Loss of NOVA2 in HUVECs resulted in significantly increased levels of sFLT1, but did not affect expression of membrane-bound FLT1. NOVA2 protein was shown to directly interact with FLT1 mRNA. Loss of NOVA2 was also accompanied by impaired endothelial functions such as sprouting. We were able to restore sprouting capacity by exogenous VEGF. We did not observe statistically significant regulation of NOVA2 or sFLT1 in the placenta. However, we observed a negative correlation between sFLT1 and NOVA2 expression levels. In conclusion, NOVA2 was found to regulate FLT1 splicing in the endothelium. Loss of NOVA2 resulted in impaired endothelial function, at least partially dependent on VEGF. In PE patients, we observed a negative correlation between NOVA2 and sFLT1.


Assuntos
Hipertensão Induzida pela Gravidez , Pré-Eclâmpsia , Gravidez , Feminino , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Antígeno Neuro-Oncológico Ventral , Pré-Eclâmpsia/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Endotélio/metabolismo
2.
PLoS One ; 17(9): e0265160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36173935

RESUMO

The evolutionary conserved Taurine Upregulated Gene 1 (TUG1) is a ubiquitously expressed gene that is one of the highest expressed genes in human and rodent endothelial cells (ECs). We here show that TUG1 expression decreases significantly in aging mouse carotid artery ECs and human ECs in vitro, indicating a potential role in the aging endothelial vasculature system. We therefore investigated if, and how, TUG1 might function in aging ECs, but despite extensive phenotyping found no alterations in basal EC proliferation, apoptosis, barrier function, migration, mitochondrial function, or monocyte adhesion upon TUG1 silencing in vitro. TUG1 knockdown did slightly and significantly decrease cumulative sprout length upon vascular endothelial growth factor A stimulation in human umbilical vein endothelial cells (HUVECs), though TUG1-silenced HUVECs displayed no transcriptome-wide mRNA expression changes explaining this effect. Further, ectopic expression of the highly conserved and recently discovered 153 amino acid protein translated from certain TUG1 transcript isoforms did not alter angiogenic sprouting in vitro. Our data show that, despite a high expression and strong evolutionary conservation of both the TUG1 locus and the protein sequence it encodes, TUG1 does not seem to play a major role in basic endothelial cell function.


Assuntos
RNA Longo não Codificante/genética , Taurina , Fator A de Crescimento do Endotélio Vascular , Envelhecimento , Aminoácidos , Animais , Apoptose/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , RNA Mensageiro
3.
PLoS One ; 15(8): e0235930, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32750054

RESUMO

Circadian clocks control rhythms in physiology and behavior entrained to 24 h light-dark cycles. Despite of conserved general schemes, molecular circadian clockworks differ between insect species. With RNA interference (RNAi) we examined an ancient circadian clockwork in a basic insect, the hemimetabolous Madeira cockroach Rhyparobia maderae. With injections of double-stranded RNA (dsRNA) of cockroach period (Rm´per), timeless 1 (Rm´tim1), or cryptochrome 2 (Rm´cry2) we searched for essential components of the clock´s core negative feedback loop. Single injections of dsRNA of each clock gene into adult cockroaches successfully and permanently knocked down respective mRNA levels within ~two weeks deleting daytime-dependent mRNA rhythms for Rm´per and Rm´cry2. Rm´perRNAi or Rm´cry2RNAi affected total mRNA levels of both genes, while Rm´tim1 transcription was independent of both, also keeping rhythmic expression. Unexpectedly, circadian locomotor activity of most cockroaches remained rhythmic for each clock gene knockdown employed. It expressed weakened rhythms and unchanged periods for Rm´perRNAi and shorter periods for Rm´tim1RNAi and Rm´cry2RNAi.As a hypothesis of the cockroach´s molecular clockwork, a basic network of switched differential equations was developed to model the oscillatory behavior of clock cells expressing respective clock genes. Data were consistent with two synchronized main groups of coupled oscillator cells, a leading (morning) oscillator, or a lagging (evening) oscillator that couple via mutual inhibition. The morning oscillators express shorter, the evening oscillators longer endogenous periods based on core feedback loops with either PER, TIM1, or CRY2/PER complexes as dominant negative feedback of the clockwork. We hypothesize that dominant morning oscillator cells with shorter periods express PER, but not CRY2, or TIM1 as suppressor of clock gene expression, while two groups of evening oscillator cells with longer periods either comprise TIM1 or CRY2/PER suppressing complexes. Modelling suggests that there is an additional negative feedback next to Rm´PER in cockroach morning oscillator cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Baratas/fisiologia , Criptocromos/metabolismo , Proteínas de Insetos/metabolismo , Proteínas Circadianas Period/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Relógios Circadianos , Ritmo Circadiano , Baratas/genética , Criptocromos/genética , Proteínas de Insetos/genética , Masculino , Proteínas Circadianas Period/genética , Fotoperíodo , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA